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The communication channels of the disconnected (mutually non-bonded, closed)
parts of the molecule are investigated. The entropy/information indices of such
subsystems are proposed as measures of the intra-fragment (internal) information bond-
order and its covalent/ionic components. The molecular fragment bond-order conser-
vation and a competition between its ionic and covalent contributions are examined.
An approximate scheme in the spirit of the grouping theorem of the Information The-
ory (IT), for combining the subsystem entropy/information data into the correspond-
ing global quantities describing the system as a whole, is derived and tested. It uses the
independent subsystem approximation to estimate the entropy/information indices of
the inter-fragment (external) chemical interactions in the molecule. The applications to
simple orbital models, including the three-orbital model of the transition state complex
and the π bond systems (butadiene and benzene) in the Hückel theory approximation,
are used to illustrate the concepts proposed.

KEY WORDS: atoms-in-molecules, bond-orders, chemical bonds communication the-
ory, entropy information, information theory, molecular fragments

1. Introduction

The Information Theory (IT) [1] has recently been applied to interpret the
electronic structure of molecules in terms of their subsystems and the associ-
ated chemical bond multiplicities. It has been used to probe the promoted states
of bonded atoms [2–7] and to diagnose the chemical bonds in molecules [8–12]
or interactions between reactants [6b,13]. These applications have demonstrated
the potential of the IT approach in extracting the chemical interpretation of the
calculated molecular distributions of electrons. The theory allows one to treat
various stages of the molecular reconstruction of the free (non-bonded) atoms
in chemical processes, both intermediate and final. The Hirsheld [14] subsys-
tems, e.g., Atoms-in-Molecules (AIM), have been shown to represent the unique,
equilibrium pieces of the molecular one-electron density, which locally equalize
their information-distance densities, relative to the free atoms of the isoelectronic
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promolecule, at the corresponding global value. The “stockholder” principle of
Hirshfeld has been justified using the constrained variational principle for the
information distance (entropy deficiency, missing information, cross-entropy) of
Kullback and Leibler [1h,i], using the global (Shannon [1b,c] or local (Fisher [1a,
g]) measure of the information content of the electron distribution. The densi-
ties of the missing-information and the Shannon entropy displacement have also
been related to the molecular density difference function, which uses the same
promolecular reference and is widely used by theoretical chemists to separate the
charge redistribution due to the chemical bonds [6]. With this development the
surprisal of the entropy deficiency of the molecular electron distribution has been
related to the density difference function, thus providing the latter a novel miss-
ing information interpretation. The Charge-Transfer Affinities, representing the
generalized forces driving changes in the electronic structure of the donor–accep-
tor reactive systems, have also been introduced [6b]. They combine the familiar
Fukui function [15] response properties of molecular fragments (derivatives of the
system energy) with the corresponding information-distance densities (derivatives
of the system missing information), thus providing a more complete description
of reactants.

This free-atom (promolecule) referenced information-theoretic approach
to molecular systems demonstrates the importance of the entropy/information
quantities of IT for extracting an understanding of the “chemistry” behind the
calculated molecular electron distributions. Such information-theoretic concepts
facilitate a more direct connection between the ab initio results of computational
quantum chemistry and the intuitive language of chemistry, in which such con-
cepts as bonded atoms, bond multiplicities, promotion energy, amount of charge
transfer, electronegativity, and hardness/softness characteristics of the electron
gas in a molecule, play a crucial role. The energy and entropy deficiency cri-
teria for the equilibrium distribution of electrons in molecules and their frag-
ments have been examined and the thermodynamic-like, local description of
molecular subsystems have been proposed [7]. The effective external potential
representability of the molecular fragment densities have also been discussed
[2b,4b].

An important part of the chemical understanding of molecules is an ade-
quate indexing of multiplicities (“orders”) of the chemical bonds [16–18]. It
has been recently demonstrated, that this key issue can be also successfully
approached using concepts and techniques of the IT [8–12]. It has been argued
that the chemical bonds, representing the AIM “connectivities”, define a “trans-
mission” network, through which the information contained in the electron prob-
ability distributions can be transferred throughout the molecule. It has been
shown that the theory of communication systems [1b–f] can be used to generate
the global entropy/information descriptors of the chemical bonds and their cova-
lent/ionic composition [8–10]. These overall entropy/information descriptors of
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the chemical bonds in several model bonding and non-bonding electron config-
urations were shown to generally agree with the chemical intuitive expectations.

Chemistry is the science about both molecules and their constituent fragments,
e.g., a given pair of AIM or a larger collection of bonded atoms: functional
groups, reactants, etc. Therefore, besides the global bond indices, characterizing
the chemical bond multiplicity and its covalent/ionic composition of the system
as a whole, of interest in chemistry also are the entropy/information bond char-
acteristics of molecular subsystems, reflecting the overall multiplicities of both
the internal chemical interactions, between the subsystem constituent AIM, and
external chemical bonds linking the fragment in question and the rest of the
molecule. In this work we shall approach this classical problem from the Com-
munication Theory viewpoint [8–12], which naturally connects to the two-electron
Valence Bond (VB) perspective of Heitler and London [19] thus representing a
direct continuation of these classical ideas of quantum chemistry and providing
them a complementary entropy/information extension. Since the details of this
information-theoretic approach to the global chemical bond orders in molecular
systems have already been presented elsewhere [8,10], we shall limit the present
introduction only to its basic elements. In this theory the molecular system in
atomic resolution M = (i j k l . . . ), consisting of the mutually bonded (open)
AIM (i, j , k, l, ...), is interpreted as the “communication” channel, in which the
“signals” of the electron allocations to constituent atoms are propagated from
the molecular (A) or promolecular (A0) input (“source”) to the molecular output
(B) (“receiver”) via a transmission network defined by the AIM-resolved molec-
ular two-electron conditional probabilities P(B|A) = {P(j |i) = Pi,j /Pi}; here,
the joint two-electron probabilities P={Pi,j } correspond to the event of simulta-
neously finding two electrons on specified AIM and the molecularly normalized
one-electron probabilities P = {Pi = �jPi,j } correspond to events of locating an
electron on specified bonded atom: �i�jPi,j = �iPi = 1. The corresponding
set of the atomic probabilities P 0 = {P 0

i }, where �iP
0
i = 1, for the isoelec-

tronic Atomic Promolecule (AP) M0 = (i0|j 0|k0|l0|...), defines the promolecular
input scheme, corresponding to a collection of the promolecularly normalized
one-electron probabilities of the free mutually non-bonded (closed) constituent
atoms shifted to their actual positions in the molecule. The electron delocaliza-
tion accompanying the bond formation is responsible for the communicational
“noise” affecting the flow of information throughout the molecular channel.

The atomic condensed probabilities, which define the molecular communi-
cation network, are proportional to the corresponding electron and electron-pair
populations in the bonded atom resolution, resulting from a division of the one-
and two-electron densities of the constituent atoms, using, e.g., the stockholder
partition scheme of the molecular electron density [6] and its generalization cov-
ering the exhaustive AIM-cluster division of the molecular many-electron distri-
butions [7]. In the present illustrative applications to simple bond models using
the Orthogonal Atomic Orbital (OAO) [1,3], in which each AIM contributes a
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single orbital to form the chemical bonds with remaining AIM, this division
is uniquely determined by the structure of the Molecular Orbitals (MO) of the
standard LCAO MO approximation. In the general case one can use for exam-
ple the symmetrically (Löwdin) othogonalized OAO basis set to determine the
AIM-resolved electron populations. It should be emphasized, that these AIM
resolved probabilities can be alternatively extracted in the basis set independent
way, e.g., by integrating the AIM-resolved stockholder pieces of the molecu-
lar one- and two-electron densities [3,14] from any sort of quantum mechanical
calculations.

The average molecular conditional entropy,

S(B|A) = −�i∈M�j∈MPi,j log[Pi,j /Pi ] = −�i∈M�j∈MPi,j log P(j |i) ≡ SM, (1)

and mutual information in the promolecular input and molecular output proba-
bility distributions,

I (A0 : B) = I (B : A0) = �i∈M�j∈MPi,j log[Pi,j /(P
0
i Pj )]

= �i∈M�j∈MPi,j log[P(i|j)/P 0
i ] ≡ IM, (2)

the standard descriptors of communication channels in the IT [1b-f], have been
identified previously as adequate measures of the global covalent and ionic com-
ponents of the system chemical bonds [8–12]. They define the associated overall
entropy/information bond index:

N(A; B) = S(B|A) + I (A0 : B) ≡ NM. (3)

The quantity of equation (1) represents the average amount of the uncer-
tainty about the occurrence of the molecular output events, given that the molec-
ular input events are known to have occurred. It thus provides a measure of the
communication noise in the molecular channel. The quantity of equation (2) mea-
sures the complementary aspect of the molecular communication network, i.e.,
the amount of information flowing through the channel. These complementary
entropy/information descriptors are illustrated in scheme 1.

The Communication Theory of the chemical bond views the molecular
system as an information network exhibiting the quantum–mechanical noise in
propagating the atom assignment signals of valence electrons, due to the chem-
ical bonds connecting bonded atoms. Alternative entropy/information quanti-
ties, which can be used to characterize such molecular communication channels,
have been examined. The information-theoretic measures of the system global
entropic covalency and its information ionicity have been established [8–10] and
the entropy/information descriptors of the chemical bonds of molecular frag-
ments derived from the subsystem partial [12] and reduced [11] communication
channels have been developed and tested. It is the main purpose of the pres-
ent work to present alternative approach to the entropic bond indices of molec-
ular subsystems, which is based upon the disconnected/independent fragment
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Scheme 1. A qualitative diagram of the conditional entropy and mutual information quantities for
two probability distributions: P (a) = p and P (b) = q, where a and b denote the corresponding sets
of events. They define the two probability schemes: A = {a; P (a)} and B = {b; P (b)}. Two circles
enclose the areas representing the Shannon entropies S(A) ≡ −�ipi log pi and S(B) ≡ −�jqj log qj

of the two separate distributions. The common (overlap) area of the two circles corresponds to the
mutual information I (A : B) in both distributions. The remaining parts of two circles represent the
corresponding conditional entropies S(A|B) and S(B|A), measuring the residual uncertainty about
events in a one set, when one has the full knowledge of the occurrence of the events in the other
set of outcomes. The area enclosed by the envelope of the two overlapping circles then represents
the entropy of the product (joint) distribution P = P(a, b): S(AB) = S(A) + S(B) − I (A : B) =
S(A) + S(B|A) = S(B) + S(A|B).

approximation. The latter supplements the internal bond descriptors, resulting
from the disconnected communication channels of molecular parts, with the
approximate external bond contributions of the independent molecular frag-
ments treated as whole units.

The key issue in the molecular fragment development is an extraction of the
relevant subsystem communication channel from the known molecular channel.
Previously, the bonding patterns of the constituent subsystems have been gen-
erated from the partial channels [12] of the mutually bonded (connected, open,
and embedded) molecular fragments, which appear in the additive decomposi-
tion of the global entropic bond-order measures. Alternatively, one can apply
the molecular channel reduction [11], by combining several AIM into a single
input/or output unit, to extract both the internal and external bond multiplicities
of molecular subsystems. The key issue to be addressed in such an approach is
a judicious targeting of the reduction scheme to address specific chemical prob-
lems. The subsystem reductions of the molecular channel were shown to offer
a flexible way to turn-on or turn-out specific bonds in the molecule, and thus
to extract measures of the internal and external bonds of the bonded molecular
fragment. Both the partial and reduced channel approaches effectively take into
account all “communications” between the subsystem in question and the rest
of the molecule. These treatments give rise to the subsystem entropy/information
indices of both the internal (intra-fragment) and external (between the subsys-
tem and its molecular environment) chemical bonds which emphasize the equilib-
rium (equalized) character of the molecular ground-state. More specifically, the
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predictions for the localized bonds between alternative pairs of AIM, exhibit
only a minor variations, contrary to the Molecular Orbital description [16–18],
which predicts larger variations between bond indices.

In the present work we shall approach this problem through the com-
munication channels of the mutually non-bonded (disconnected, closed, sepa-
rated) fragments of the molecule. The communication channels describing the
separated (closed, disconnected) parts of the molecule, which generate the frag-
ment internal bond indices, can be subsequently coupled in the molecule in
accordance with the conditional probabilities of the independent molecular frag-
ments, to generate the approximate external bond descriptors of the Commu-
nication Theory. We shall evaluate the accuracy of such an approximation by
applying it to several simple orbital models which have previously been used to
test the entropy/information indices of the chemical bond [8–12]. These inter-
nal and external information bond indices of molecular subsystems will then be
combined into the corresponding global descriptors. The resulting approximate
combination rules will be related to the Grouping Axiom of the Shannon IT
[1b]. This simple scheme will be shown to reproduce the global indices of simple
model systems to a remarkably high accuracy.

2. Renormalized channels of the separated diatomics-in-molecules

By closing a group of the externally non-bonded atoms in the molecular
communication channel one can limit the range of the electron delocalization to
any set of AIM, e.g., a pair or a larger subset of constituent atoms. The renor-
malized (r) communication channel for the diatomic (i, j) in the constrained sys-
tem M∗(i, j) = (...|l|i j |k|...), in which only atoms i and j are mutually bonded
(open), is shown in scheme 2; here the vertical solid line separates the mutually
closed subsystems, while the vertical broken line signifies the freedom of the two
subsystems to exchange electrons, i.e., to form chemical bonds.

The renormalized conditional probabilities of such a communication chan-
nel have to satisfy the closure relations: Qr

i−j (i) + Qr
i−j (j)=1 and �m=(i,j)

P r
i−j (m|n)=1, for n∈(i, j). They are obtained from the (i, j)-block, Pi−j , of the

molecular condensed two-electron probabilities P, which determines the subsys-
tem sums:

�k=(i,j)�l=(i,j)Pk,l = ℘i−j , �k=(i,j)Pk,l = ℘i−j (l), �l=(i,j)Pk,l = ℘i−j (k)

for (k, l) ∈ (i, j), (4)

and the renormalized probabilities:

{Qr
i−j (n) = ℘i−j (n)/℘i−j } = P i−j (Ar ) = P i−j (Br ),

{P r
i−j (m, n) = Pm,n/℘ (i, j)} = Pi−j (ArBr ),

{P r
i−j (m|n) = P r

i−j (m, n)/Qr
i−j (n)} = Pi−j (Br |Ar ); (n, m) ∈ (i, j). (5)
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Scheme 2. Schematic diagram of the communication channel for the separated diatomic in
molecule, consisting of mutually open AIM i and j in M*(i, j) = (... |l|i j |k| ...). The inter-atomic
probabilities are the AIM-resolved conditional probabilities. The same convention is used in the
remaining schemes of communication channels.

As an illustration let us consider the 3-OAO model of the symmetric TS
complex [17b, c]. It describes three electrons contributed by the three constituent
atoms in a symmetric Transition-State (TS) complex [A1—B—A2]‡ of the atom-
exchange reaction A1 − B + A2 → A1 + B − A2, e.g., in the H2 + H reactive
system, which occupy the two lowest MO obtained by combining the three OAO
X(r) = {A(r), B(r), C(r)}, centered on the respective AIM. The relevant AP ref-
erence assumes one electron on each atom/orbital with the alternant spin orien-
tations, A0

1(↑)+B0(↓)+A0
2(↑), in M0 = (A0

1|B0|A0
2) = (A1|B1|C1), which exhibits

the highest degree of spin-pairing between the neighboring free atoms and thus –
the highest spin distribution similarity to that of the molecular ground-state of
TS complex.

The model molecular electron configuration is controlled by the charge of
the middle atom B, q=qB = qα

B + q
β

B , and its spin polarization Σ=qα
B − q

β

B . For
a given value of Σ the allowed values of q are in the range |Σ | � q � 2 − |Σ |
and the overall spin polarization of the AP, Nα,0 − Nβ,0 = 1, is preserved in
the bond-breaking–bond-forming process. It follows from the extended basis set
UHF calculations for H3 [17b,c] that the optimum TS configuration exhibits
almost uniform distribution of electrons among constituent AIM, q = 1.086, and
a positive, fractional spin polarization on the middle atom: Σ = 0.135. In this
TS complex all pairs of AIM exhibit fractional bond multiplicities.

In scheme 3 selected distributions of electronic spins of the model are
reported for the three crucial values of the spin polarization parameter, Σ =
{−1, 1, 1/3}, and the uniform distribution of electrons among three constituent
atoms, for q = 1, i.e., A = A0, which marks the maximum covalency (average
electron uncertainty) for any fixed value of Σ [9, 10c], with the Maximum Global
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Scheme 3. The atomic populations of the spin-up (↑) and spin-down (↓) electrons in the 3-OAO
model of the symmetric TS for the uniform distribution of electrons among AIM (q = 1) and Σ =
{−1 (Panel a), 1 (Panel b), 1/3 (Panel c)}. As also indicated in Panel a the (Σ = −1, q = 1) spin
populations also characterize the assumed AP reference.

Covalency (MGC) structure corresponding to Σ = 1/3 (scheme 3c), for which
the AIM spin populations are equalized. The communication channels for these
three electron configurations of the model are shown in scheme 4, where the
global entropy/information indices N(A; B), S(B|A), and I (A : B) have also been
reported. Throughout the paper the entropic bond descriptors are measured in
bits. The renormalized channels of the separated (A, B) fragment for the uniform
AIM electron populations (q =1) are shown in scheme 5, while the correspond-
ing channels for the (A, C) fragment are the subject of scheme 6. The overall
(internal) entropy/information bond indices of the separated diatomic (X, Y ) ≡
X − Y ,

Nr
X−Y = SX−Y (Br |Ar ) + IX−Y (Ar : Br ), (6)

are also reported in schemes 5 and 6, together with their components: the bond
covalency, measured by the diatomic conditional entropy SX−Y (Br |Ar ), and its
ionicity, measured by the mutual information IX−Y (Ar : Br ), for the renormalized
diatomic input and output probabilities of equation (5). A reference to schemes
5 shows that the predicted diatomic bond multiplicities Nr

A−B (or – by symmetry
– Nr

B−C) and Nr
A−C remain roughly preserved at about 1 bit level. Their composi-

tion reflects the relative importance of the ionic and covalent bond contributions.
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Scheme 4. The molecular communication channels for the mutually bonded (open) AIM in the
3-OAO model of the molecular symmetric TS complex for q = 1 and Σ = −1 (a), 1(b), and 1/3(c).
In panel d the corresponding AP channel is shown, representing the mutually non-bonded (closed)
free atoms giving rise to three (disconnected, deterministic, noiseless) atomic channels and vanish-
ing bond indices. For each channel the two-electron and conditional entropies, as well as the mutual
information descriptors (in bits) are also reported.

It is seen to change with both the molecular spin polarization and the choice of
a diatomic. The A–B and A–C bonds are seen to be identical and almost purely
covalent in the MGC structure, for Σ = 1/3 (panels c). For the Σ = 1 con-
figuration (panels b) the A–B bond is predicted to be approximately half cova-
lent and half ionic, while the A–C bond remains purely covalent. Finally, for the
Σ = −1 (panels a) both the A − B and A − C bonds are diagnosed as purely
ionic, as indeed reflected by the spin separation shown in scheme 3.

Next, let us examine the separated π -bonds in the hypothetical biradi-
cal butadiene, M∗(A, B) = (AB|C|D), with the π electrons of the remaining
two (closed) carbon atoms C and D being excluded from the bond formation.
We are interested in the entropy/information descriptors of the covalent/ionic
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Scheme 5. Renormalized communication systems of the A − B fragment in M∗(A, B) = (AB|C),
for q = 1 and Σ = −1 (a), 1(b), and 1/3(c), in the 3-OAO model of the symmetric TS.

composition of the three sets of equivalent bonds in the Hückel approxima-
tion, {1–2, 3–4}, {2–2, 1–4}, and {1–3, 2–4}, for the consecutive numbering
of atoms in the carbon chain. The corresponding renormalized communication
channels, with the closed atoms removed to simplify the diagram, are shown in
scheme 7, where the relevant entropy/information bond indices are also reported.
The molecular channel and its entropic quantities are reported in scheme 9Ba.

As in the 3-OAO model, the resulting overall information index of 1 bit
is preserved. It follows from the entropy/information data reported in scheme 7
that the terminal (1–2) and (3–4) bonds in the carbon chain practically exhibit
the purely covalent character (panel a), while the (2–3) and (1–4) bonds, between
the middle and terminal carbons, respectively, have distinctly higher ionic content
(about 12%) (panel b). A comparable level of ionicity (around 8%) is predicted
for the (1–3) and (2–4) bonds (panel c).

Of interest also are the corresponding diatomic channels for alternative
pairs of carbon atoms in the benzene ring, shown in scheme 8. The corre-
sponding molecular channel and its entropy/information indices are reported in
scheme 10Ba. It should be stressed, that these hypothetical separated channels
are defined by a single pair of bonded (open) ring atoms, thus corresponding to
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Scheme 6. Renormalized communication systems of the A − C fragment in M∗(A, C) = (AC|B),
for q = 1 and Σ = −1(a), 1(b), and 1/3 (c), in the 3-OAO model of the symmetric TS.

the localized (single) π electrons on each of the remaining non-bonded (closed)
carbon atoms in the benzene ring.

A reference to scheme 8 indicates that all these hypothetical (localized) π

bonds in the benzene ring are strongly covalent and exhibit only a residual infor-
mation ionicity below 10%. The highest entropy covalency (lowest information
ionicity) is found for the mutual ortho-position of the two carbon atoms, while
the lowest covalency (highest ionicity) is observed for the meta-pairs or the ring
AIM; the para C–C interaction exhibits intermediate levels of the two bond com-
ponents, which are relatively closer to the meta than ortho predictions.

3. Mutually separated groups of AIM

One can also consider several mutually separated (disconnected, closed,
non-bonded) groups G={Gi}, each consisting of the chemically interacting
(connected, open, bonded) subset of constituent atoms, with the chemical
bonds being allowed exclusively within each group, e.g., M∗(G1|G2|G3) =
(i j . . . |k l . . . |m n . . . ) ≡ M∗(i, j, ...|k, l, ...|m, n, ...). Examples of such a divi-
sion of the π -bond systems in butadiene and benzene are shown in schemes
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Scheme 7. Renormalized communication systems for the A − B−fragment in the biradical butadi-
ene M∗(A, B) = (AB|C|D) in the Hückel approximation: A−B ={1–2 or 3–4} (panel a), {2–3) or
(1–4)} (panel b), and {1–3 or 2–4} (panel c). The closed carbon atoms C and D, which are hypo-
thetically excluded from forming the π -bonds in the carbon chain, are not shown in these diagrams.

Scheme 8. Renormalized, separated π -electron communication systems for alternative pairs i − j

of carbon atoms in benzene, M∗(i, j) = (i j |k|l|...): j = i + 1 (panel a), i + 2 (panel b), and i + 3
(panel c), in the Hückel approximation. The closed carbon atoms k �= (i, j), which are hypotheti-
cally excluded from forming π -bonds with the system remainder, are not shown in the diagrams.
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Scheme 9. The mutually separated groups of AIM in the butadiene π -chain (part A) and their
entropy/information indices (in bits). In part B the communication channels are shown for the buta-
diene as a whole and for the triatomic allyl chain G1 = (1, 2, 3). The corresponding channels for the
diatomic fragments have been reported in scheme 7.
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9 and 10, respectively, where the relevant channels (in the Hückel theory
approximation) of both the system as a whole and of its separated frag-
ments are reported together with the corresponding entropy/information indices.
Due to the mutually disconnected character of these subsets of bonded atoms,
the global indices of such hypothetically partitioned “molecular” systems are
the corresponding sums of additive intra-group contributions. It follows from
scheme 9 that the entropy/information indices of the overall bond multiplicity
N=S + I and its covalent (S) and ionic (I ) components generally agree with
intuitive chemical estimates for both the molecular and hypothetical (“valence”)
structures in butadiene. For example, a diminished information bond order for
M∗(1, 2, 3|4) = M∗(G1|4) (panel Ab) agrees with the 3/2-bit, i.e., 3/2 bond,
expected for the allyl fragment G1, with the remaining structures (panels Ac–
e), involving divisions into separate diatomic subsystems, all giving rise to the
conserved, 2-bit (double) total π -bond index. The differences in “strengths” of
the corresponding localized bonds are also well reflected by the bond compo-
sition. The lowest covalent component N cov = 1.76 bits is predicted in panel
Ad, for bonds corresponding to pairs of the terminal and middle carbon atoms,
respectively, while the two pairs of neighboring atoms in panel Ac generate
almost purely covalent bond, N cov = 1.99 bits. The second-neighbor pairs in
panel Ae give rise to the bond composition, which is intermediate between these
two extreme electronic structures.

Similar conclusions follow from the corresponding results for the “valence”
structures in benzene, reported in scheme 10. Limiting the electron delocaliza-
tion to the consecutive four carbon atoms in the benzene ring (panel Ab) in
M∗(1, 2, 3, 4|5, 6)=M∗(G1|G2) gives the total 3-bit (triple) π -bond in the system,
in a general agreement with the chemical expectation. The bond composition
in the G1 fragment is almost identical to that in butadiene, with effectively
two almost purely covalent conjugated π -bonds; the 1-bit (single) bond in G2

is also seen to be almost exclusively covalent in character. A comparison of
these predictions with the entropy/information indices of the system as a whole
(panel Aa) indicates that the overall index, again of almost exclusively condi-
tional entropy origin, becomes lowered, when the hypothetical barriers for the
electron delocalization in the carbon ring are lifted. Indeed, the extra inter-group
connections present in the molecular communication system of panel Ba, rel-
ative to those resulting from the separate fragment channels of schemes 10Bb

and 8a, effectively lower the overall indeterminancy exhibited by the molecu-
lar π -electron probabilities. The entropic indices for the remaining partitions of
panels Ac–e, into the separate diatomic and atomic subsystems, are also seen
to be in accord with the chemical intuition. The diatomic interactions across
the benzene ring are diagnosed as generating a slightly higher information ionic-
ity (panels Ad,e), in comparison to those between the nearest neighbors (panels
Ab,c).
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Scheme 10. The mutually separated groups of bonded carbon atoms in the π -bond ring of ben-
zene (part A) and the normalized communication channels (part B) for the system as a whole
(panel a) and the four atom fragment G1(panel b) (see panels A (a,b)). The relevant two-atom chan-
nels of the separate bonds are summarized in scheme 8. In part a the predicted overall and group
entropy/information indices (in bits) of the covalent and ionic bond components and the resulting
overall bond index are listed. In the molecular channel of Panel Ba only the first column P(B|1)

of the conditional probability matrix P(B|A) is shown in the diagram; the remaining columns are
uniquely determined by symmetry and represent permutations of the elements of the first column.

4. Combining the subsystem entropies into the global information indices

The renormalized probabilities of molecular subsystems (equation (5))
and communication channels of schemes 2, 5–10 are the fragment-conditional.
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Indeed, the sum of equation (4),

℘i−j ≡ ℘K = ℘K(i) + ℘K(j), (7)

denotes the probability that a pair of electrons has been located in the molecule
on the diatomic fragment K = (i, j), with the partial sum ℘K(n) thus represent-
ing the probability that an electron of this pair on K will be found on nth AIM
of K. Similarly, the group one-electron input probabilities of scheme 1 (see also
equation (5)),

Qr
K(n) = ℘K(n)/℘K ≡ Q(n|K), n ∈ K, �n∈KQ(n|K) = 1, (8)

denotes the conditional probability of finding an electron on atom n in K.
This conditional character of the subsystem renormalized distributions is also
reflected by their respective normalizations, e.g., that in the preceding equation.
A similar conditional interpretation applies to the output one-electron probabil-
ities of scheme 1:

Rr
K(n) = Qr

K(i)P r
K(n|i) + Qr

K(j)P r
K(n|j) = P r

K(n, i) + P r
K(n, j) = Q(n|K). (9)

The subsystem renormalized two-electron probabilities of equation (5) also have
the conditional meaning. More specifically, for {m, n} ∈ K,

P r
K(m, n) = Pm,n/℘K = P(m, n|K), �m∈K�n∈KP (m, n|K) = 1. (10)

This conditional interpretation of the subsystem renormalized probabilities
naturally connects the above separated subsystem development to the scenario
of the familiar Grouping Axiom of the IT [1b]. Let us consider a general discrete
probability distribution p = {pi} = {pK}, where probabilities pK = {pi∈K} corre-
spond to the exclusive groups of outcomes G = {GK ≡ K} and

�ipi = �K

(
�j∈Kpj

) ≡ �KPK = 1. (11)

Here the vector P G = {PK} combines the normalized condensed probabilities PK ,
of the molecular outcome in group K, which in turn define the fragment-condi-
tional, intra-group probabilities:

πK = {π(i ∈ K|K) = pi∈K/PK}, �i∈Kπ(i|K) = 1. (12)

The Grouping Axiom states that the inter- and intra-group entropies should
be combined into the entropy of the whole probability distribution in the follow-
ing way:

S(p) = S(P G) + �KPKS(πK). (13)

In other words, the entropy of the distribution p is the sum of the inter-group
entropy S(P G), solely determined by the condensed probabilities of the groups



R.F. Nalewajski / Bond indices of molecular fragments 59

of outcomes, and the mean of the intra-group entropies {S(πK)}, generated by
the fragment-conditional intra-group probabilities with the group probabilities
P G providing the “weights” in the average. This condition is indeed satisfied by
the Shannon entropy, since using the normalization condition of equation (12)
gives:

S(p) = −�ipi log pi = −�K�j∈Kpj log pj = −�KPK�j∈Kπ(j |K) log[PKπ(j |K)]

= −�KPK log PK − �KPK [�j∈Kπ(j |K) log π(j |K)]

= S(P ) + �KPKS(πK). (14)

We now seek similar Combination Rules for the global entropy/information
indices of the chemical bond covalency and ionicity in terms of the internal bond
indices of the Separated Fragment Approximation (SFA). Clearly, the discon-
nected character of the separated fragments misses the external (inter-fragment)
part of the chemical communications between AIM. Therefore, the internal bond
indices have to be supplemented by a realistic representation of contributions
due to bonds between the groups of atoms defining the partition. The sim-
plest is the Independent Fragment Approximation (IFA), in which the inter-sub-
system two-electron probabilities, treated in the condensed subsystem resolution,
are products of the condensed one-electron probabilities of the independent frag-
ments (see scheme 11). In this approximation the inter-fragment mutual infor-
mation index, measuring the information ionicity of these interactions vanishes
identically (zero overlap case of scheme 1). In other words the IFA amounts
to an assumption of a purely covalent character of the inter-group interactions.
Therefore, it should be quite adequate in partitions involving practically neutral
parts of the molecule, exhibiting negligible overall net charges. For example, this
is the case in the π electron systems of butadiene and benzene, on which the
resulting combination rules for bond indices will be tested.

When combining (mutually opening) the molecular subsystems in the
inter-subsystem communication stage of scheme 11b, this combined SFA/IFA
approach uses the AIM-resolved, molecular intra-subsystem two-electron proba-
bilities at the separated subsystem stage of scheme 11a, and it views the inter-
subsystem events, as involving the independent molecular fragments treated as
whole units, or equivalently – the average bonded atoms on each fragment. The
cascade of these two molecular channels, shown in scheme 11c, then determines
the desired combination rule for generating the molecular bond indices from
the condensed group probabilities and the intra-group entropies of the separated
subsystems in the molecule.

Schemes 11a,b reflect two levels of acquiring the entropy/information char-
acteristics of the whole molecular system, which are finally combined in the
approximate molecular channel of scheme 11c. More specifically, the AIM
resolved first panel extracts from the known molecular probabilities the inter-
nal bond indices of each separate (isolated) fragment at atomic level, while
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Scheme 11. Combining the AIM-resolved channels of the separated fragments in M∗ = (k|l) =
(K|L) (in boxes, panel a) with the subsystem-resolved channel of the independent molecular frag-
ments in M = (K, L) (panel b) into an effective molecular “cascade” (panel c). The effective channel
of panel c allows one to use the subsystem entropy/information indices to generate the approxi-
mate global bond indices, of the open atoms in M = (k l). The symbol R in the last panel denotes
the channel reduction, in which the separate AIM outputs of a given molecular fragment are “con-
densed” into a single output of the subsystem as a whole.

the less resolved IFA channel generates the complementary entropy/information
measures characterizing the fragment-in-molecule.

Let us now examine the combination rule for the conditional entropy
measure of the system global bond covalency. First, we exhaustively divide the
constituent bonded atoms i = {i} of the molecule, M = (i, j, . . .), among
the exclusive groups of AIM in M∗ = (k|l|. . .) ≡ (K|L|. . .), representing
the separated molecular fragments K = {K} (see scheme 11a). This partition
defines the associated division of the molecular one-and two-electron probabil-
ities: P={P K={Pk}≡P (k)} and P={PK,L={Pk,l}≡P(k, l)}, where k ∈ k, l ∈ l,
etc. The global conditional entropy index can then be transformed into the



R.F. Nalewajski / Bond indices of molecular fragments 61

corresponding subsystem-resolved expression:

S(B|A) = S(j |i) = −�i�jPi,j log(Pi,j /Pi)

= −�K�LPK,L�k∈K�l∈L(Pk,l/PK,L) log {(Pk,l/PK,L)(PK,L/PK)/(Pk/PK)]}
≡ −�K�LPK,L�k∈K�l∈LP (k, l|K, L) log[P(k, l|K, L)P (L|K)/P (k|K)],

(15)

where P G = {PK = �k∈KPk} ≡ P(K) and {PK,L = �k∈K�l∈LPk,l} ≡ P(K, K ′).
Here, P(L|K) is the molecular condensed conditional probability of finding an
electron on fragment L, when another electron has already been located on sub-
system K, P r

K ≡ P(k|K) = {P(k|K)} groups the AIM-resolved subsystem condi-
tional probabilities of finding an electron of group K on its constituent AIM k,
while P(k, l|K, L) = {P(k, l|K, L)}= Pr

K,L(l|k) groups the joint conditional prob-
abilities that one electron of fragment K will be located on atoms k ∈ K, when
simultaneously another electron of L will be found on atoms l ∈ L.

Next, let us examine the conditional entropy of the SFA channel of M∗ =
(k|l|...) shown in scheme 11a. It consists of the separate (mutually closed, dis-
connected) group channels in atomic resolution, thus neglecting all the inter-sub-
system two-electron connections, and involves the molecular input and output
probabilities of the group constituent atoms: P = {P K = PKP (k|K)}. There-
fore, in this SFA the overall conditional entropy of the channel 11a is the sum
of additive group contributions weighted in accordance with the respective group
probabilities in M:

S(BSFA|ASFA) = −�KP SFA
K,K �k∈K�k′∈KP (k, k′|K) log[P(K|K)SFAP (k, k′|K)/P (k|K)]

= −�KP SFA
K,K log P(K|K)SFA

−�KP SFA
K,K �k∈K�k′∈KP (k, k′|K) log[P(k, k′|K)/P (k|K)]

= �KPKSK(k|k′) (16)

where P(K|K)SFA = P SFA
K,K /PK ≡ ℘K /PK , ℘K = �k∈K�k′∈KPk,k′ ≡ �k∈K ℘K(k),

and P(k, k′|K) ≡ P(k, k′|K, K). We have used in the preceding equation the nor-
malization condition for the group two-electron conditional entropies (equation
(10)) and recognized that the signal entering the subsystem K in the input must
be received with certainty by the same subsystem in the output, so that in the
overall subsystem resolution of scheme 11a P (K|K)SFA = P SFA

K,K /PK = 1, thus
giving rise to the vanishing first sum in the second line of the equation.

Therefore, the conditional entropy S(BSFA|ASFA), measuring the overall
internal covalency in a collection of separated fragments in M* (channel 8a),
is the mean of the intra-subsystem covalencies, weighted in accordance with the
molecular group probabilities P G. In other words, the SFA channel represents
an ensemble of the fragment channels, with the subsystem condensed probabil-
ities providing the corresponding ensemble probabilities, i.e., the weighting fac-
tors for calculating the average molecular uncertainties.
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It should be observed that equation (16) represents the conditional entropy
analog of the second, intra-group term in the Shannon theorem of equations
(13) and (14). Its first term, for the groups as wholes, is generated by the inter-
subsystem (external) IFA network shown in scheme 11b,

S(LIFA|KIFA) = −�K�LP IFA
K,L log(P IFA

K,L /PK)

= −�L(�KP IFA
K,L ) log PL = −�LPL log PL, (17)

since P IFA
K,L = PKPL and hence P(L|K)IFA = P IFA

K,L /PK = PL. Therefore, adding
this external IFA entropy term to the corresponding SFA internal contribution
of equation (16) gives rise to the following combination rule for the global con-
ditional entropy (bond covalency) index in terms of the relevant quantities char-
acterizing molecular fragments:

S(B|A) = S(j |i) ∼= S(LIFA|KIFA) + S(BSFA|ASFA)

= S(P G) + �KPKSK(k|k′), (18)

in the spirit of the Grouping Axiom of equation (13).
The corresponding combination rule for the global mutual information

index, measuring the overall bond ionicity in the molecule as a whole, can be
derived in a similar way. We start from the exact definition in the AIM resolu-
tion of molecular probabilities for A0 = A, as is the case in all illustrative sy-
stems used in this analysis,

I (B :A) = I (j : i) = −�i�jPi,j log[Pi,j /(PiPj )]

= −�K�LPK,L�k∈K�l∈L(Pk,l/PK,L) log{(Pk,l/PK,L)/(PkPl/PK,L)]}
≡ −�K�LPK,L�k∈K�l∈LP (k, l|K, L) log[P(k, l|K, L)/P 0(k, l|K, L)],

(19)

where P 0(k, l|K, L) stands for the joint probabilities of independent AIM, condi-
tional upon the specified molecular fragment origins of the two electrons. Invok-
ing next the SFA of scheme 11a then gives:

I (B :A) ∼= I (BSFA : ASFA) = −�KP SFA
K,K �k∈K�k′∈KP (k, k′|K)

× log[P(k, k′|K)/P 0(k, k′|K)]

= �KPKIK(k : k′), (20)

where IK(k:k′) denotes the amount of information flowing through the separated
fragment K.

As we have already observed above, the mutual information contribution
corresponding to scheme 11b vanishes identically in the IFA, since the input
and output probabilities are assumed to be independent in this approximation
at the fragment resolution level. Therefore, the preceding equation already rep-
resents the final combination rule for the system global information ionicity
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in the combined SFA/IFA treatment of scheme 11c. This global index is thus
approximated by the mean value of the intra-subsystem ionicity indices, with the
relevant weights reflecting the condensed one-electron probabilities of the molec-
ular fragments defining the partition.

In table 1 we have tested the performance of the approximate combina-
tion rules of equations (18) and (20) for the π bonds in butadiene and ben-
zene, in the Hückel theory approximation. The relevant partitions of the bonded
carbon atoms into subsystems, the associated communication channels of the
separated subsystems and their entropy/information indices are summarized in
schemes 7–10. In these alternant hydrocarbons one-electron probabilities of car-
bon atoms are identical, so that the group probabilities are proportional to the
number of atoms participating in the π -bond system in the molecule. Thus, for
the fragment K consisting of mK carbon atoms, PK = mK/m, where m denotes
the overall number of carbon atoms in the π -electron system. The reference
global entropy/information data in table 1, for the molecule as a whole, have
been reported in parts Ba of schemes 9 and 10.

An inspection of table 1 shows, that the approximate combination rules
for obtaining the global information indices of chemical bonds in the molecu-
lar system from the entropy/information descriptors of the separated molecular
fragments work quite well indeed. They exactly reproduce the global informa-
tion index N of all chemical bonds in the system and semi-quantitatively predict
its covalent/ionic composition. It should be recalled that these rules have been
derived using the SFA/IFA approximations, in which the molecular fragment
data, acquired by treating each subsystem separately, are combined as the over-
all, independent units of the approximate molecular communication system. The
success of these rules indicates that the entropy/information descriptors of molec-
ular subsystems are relatively insensitive to the details of the fragment molecu-
lar environment. In other words, the internal bond indices of a given functional
group established within the communication theory approach should be to a
large extent “transferable” (in the combination rule sense of the word) from one
molecule to another. The numerically validated adequacy of the IFA also implies,

Table 1
The performance of the combination rules for predicting the global entropy/information bond indi-
ces (in bits) from the separated molecular fragment data, for butadiene and benzene in the Hückel

approximation.

Butadiene (scheme 9) Benzene (scheme 10)

Bond index Partition: a b c d e a b c d e

S 1.944 1.958 1.994 1.881 1.918 2.551 2.545 2.551 2.539 2.530
I 0.056 0.042 0.006 0.119 0.082 0.034 0.040 0.034 0.046 0.055
N = S + I 2.000 2.000 2.000 2.000 2.000 2.585 2.585 2.585 2.585 2.585
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that the intra- and inter-fragment entropy/information indices of the molecular
fragments are additive. This observation is in sharp contrast to the energetic
characteristics of molecular subsystems, which are strongly non-additive.

In atomic resolution the ultimate partition of the atomic promolecular
reference corresponds to the separated (disconnected) free atoms (scheme 4d).
For this division scheme the intra-group entropy/information vanishes identi-
cally, thus predicting in the IFA the zero global mutual information, I (B:A) =
I (BSFA:ASFA) = I (B0:A0) = 0, consistent with the independent status of each
separated atom, and the global conditional entropy given by the group contri-
bution S(B|A) = (P G). In the 3-AO model (q = 1), butadiene, and benzene the
probability of each atom in the molecular system is identical, Pi = 1/m, where
m is the number or atoms. This gives S(B|A) = N(A; B) = log2 m(in bits).

5. Conclusion

We have explored the entropy/information descriptors of chemical bonds
involving the separated molecular fragments. These internal (intra-group) con-
tributions reflect the information bond indices of the inter-group disconnected
communication channels of molecular subsystems. The complemenatry exter-
nal (inter-group) terms, reflecting the fragment interaction with the molecular
reminder, have been obtained by treating the whole (reduced) fragments as inde-
pendent constituent parts of the molecule. This approximate combination rules
parallel the familiar Grouping Axiom of IT and have been shown to give quanti-
tatively correct predictions of the corresponding global quantities, characterizing
the whole molecule. The present separated fragment development complements
the alternative approaches, based upon the subsystem partial and reduced chan-
nels, which have been reported elsewhere [11,12].

It has been demonstrated, that the bonding patterns of the illustrative
separated molecular subsystems, which emerge from the present communication
theory approach, are generally in accord with the chemical intuition. Among
others, it has been shown that in the benzene carbon ring an opening of the
mutually closed diatomic fragments lowers the overall bond index, relative to
that characterizing a collection of the disconnected fragments. Thus, the aroma-
ticity of π electrons manifests itself by a lowering of the molecular entropy/infor-
mation index relative to the hypothetical reference of the separated or partially
delocalized π bonds. Thus, the natural tendency of the delocalized π electrons is
to destabilize the regular hexagonal structure towards the distorted system. This
is in accord with a modern outlook on the influence of the σ and π electrons
on aromaticity, [20–22] in accordance to which the π bonds favor the distorted
(cyclohexatriene-like) structures, while the σ bonds prefer the regular hexagon
structure of the benzene ring.
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The present entropy/information descriptors of the internal chemical bonds
involving the mutually non-bonded (disconnected) molecular fragments comple-
ment the recently proposed bond indices of the mutually bonded (connected)
subsystems [11,12]. The latter were shown to exhibit a high degree of equaliza-
tion marking the information equilibrium of the ground-state distribution of elec-
trons in the entropy representation, thus identifying the information “intensities”
of the mutually bonded parts of the molecule. This is reminiscent of the electro-
negativity equalization principle, [23,24] which provides the equilibrium criterion
in the familiar energy representation. It also follows from the present analysis,
that the separated subsystem indices are also more equalized than the corre-
sponding bond descriptors from the MO theory.

Clearly, the communication theory of chemical bonds in molecular systems
and their fragments, based upon the calculated one- and two-electron probabili-
ties in the atomic resolution, is conditional upon the applied AIM discretization
scheme, which is not unique. This dependence will be the subject of an indepen-
dent study. It has been argued recently [2,3] that the stockholder partitioning of
the molecular one-and two-electron distributions offers the most objective divi-
sion scheme in reference to the corresponding promolecular data, thus offering
the unbiased framework for the subsequent extraction of information-theoretic
bond indices. The orbital models, which we have used to illustrate the present
SFA/IFA treatment, have been selected only to connect to the previous studies
[8-12,17b,c] of the chemical bond multiplicities in these systems.
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